当前位置:首页 > 文化百科

九章算术

时间 : 2017-11-07 18:27:50 如有异议请联系管理!

398px-九章算術細草圖說.jpg

九章算术

《九章算术》九卷,是现存最早的中国古代数学著作之一,《算经十书》中最重要的一种。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的。在四库全书中为子部天文算法算书类。

《九章算术》内容丰富,题材广泛,共九章,分为二百四十六题二百零二术,不但是汉代重要的数学著作。在中国和世界数学史上占有重要的地位。作为中国古代数学的系统总结,对中国传统数学的发展有了深远的影响。

根据研究,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,但是其基本内容在西汉后期已经基本定型。九章算术将书中的所有数学问题分为九大类,就是“九章”。

1984年,在湖北出土了《算数书》书简。据考证,它比《九章算术》要早一个半世纪以上,书中有些内容和《九章算术》非常相似,一些内容的文句也基本相同。有人推测两书具有某些继承关系,但也有不同的看法认为《九章算术》没有直接受到《算数书》影响。

由于《九章算术》中只是列出了例子及一般的算法,却很少有任何解释和说明,所以有很多人曾为《九章算术》作注,提出了简括的证明,证明了些算法的正确性。较为著名的有在三国时期魏元帝景元四年(263年),刘徽为《九章》作注,加上自己心得体会,使其便于了解,可以流传下来。唐代李淳风又重新做注(656年),作为《算经十书》之一,作为国子监算学馆的教材和明算科的考试项目。

实数系统

《九章算术》对自然数即正整数及其运算没有给予论述,但却加以广泛应用,以自然数的基础上编写。虽然不是论述分数的专书,但是对于分数的意义、性质、四则运算论述完备。例如:约分术、合分术(加法)、减分术(减法)、乘分术(乘法)、经分术(除法)、课分术(比较大小)与平分术(平均数)。

《九章算术》出现负数概念,方程章为了配合方程术的算法,给出正负数的加、减法则。减法为“同名相除,异名相益,正无入负之,负无入正之”。加法为“异名相除,同名相益,正无入正之,负无入负之”。其中“除”是减,“益”是加,“无入”是指没有对方,不过乘除法并未记载。

《九章算术》对自然数、分数、正负数以及一些特殊无理无给予一定的论述,基本上具备实数系统的雏形。

比例与盈亏算法

粟米章所述今有术,即是四项比例算法,按术文“以所有数乘所求率为实,以所有率为法,实如法而一”。

今有术在《九章算术》应用非常广泛,为一种解题的基本算法。另一种常用的算法是衰分章的衰分术,为配分比例算法。其术文为:“各置列衰,副并为法,以所分乘未并者各自为实,实如法而一”。

timg (1).jpg

《九章算术》以列衰的倒数为列衰,称为反衰术。反衰术就是衰分术与反比例相结合的算分。而衰分术与反衰术相结合的算法,就是均输章的均输术。《九章算术》不但有正比例算法、而且还有反比例算法、复比例算法、连比例算法以及配分比例算法。这些算法都是以今有术为基础,发展而汇集起来的各种算法。

盈不足术是中国古代一种解算术难题的算法。一般算术应用题,都有确切答案。盈不足术为了推算答案,预先设立一个数字作为答案,依题目核算,若结果合问题,所设之数就是答案;若不合问,非盈即不足;通过两次假设,即可利用盈不足术求出答案。这类问题共有五种,即一盈一不足,两盈、两不足、一盈一适足、一不足一适足。《九章算术》则汇集这五种问题,并给出算法。

盈不足章除了拥有算术应用问题外,还包括一些初等超越方程问题,用这种模式算法解出前一类问题得到确切解,用以解后一类问题则得近似解。

求积与勾股

《九章算术》论述的几何图形,多为直线型和圆型的图形,根据算田亩的需要,《九章算术》论述方田、圭田、邪田、箕田、圆田、弧田、环田及宛圆的面积算法。另外由于土木建筑的需要,《九章算术》还有论述直线型立体和圆型立体图形的体积算法,这些体积算法的编排,由简单到复杂,形成独特的理论体系。

勾股计算,《九章算术》分为四类问题。有勾股互求、勾股整数、勾股两容、勾股相似。

勾股互求,即是已知勾股的一般线线,推求其他线段。勾股整数,即是《九章算术》给出推求勾、股、弦,都是整数的算法。勾股两容,为推求勾股形内接正方形及内切圆的算法。勾股相似,为利用相似勾股形性质,进行简单测远、测高的算法。

《九章算术》对几何问题的处理,分为三部分,有体积算法、面积算法、线段算法,分别隶属于商功、方田、勾股三章。

开方与方程

《九章算术》列出的平方术、开立方术以及线性方程组的解法,可以看作中国古代代数学的主要内容。《九章算术》记载的这些算法非常详尽,经由这些论述,可以了解中国古代代数学发展的成果。

开平方术、开立方术,不但可以解出二项二次方程、二项三次方程,而且可以解出一般的二次数值方程和三次数值方程。它是中国古代解出高次数值方程的基础,在数学的发展也有重要地位。

方程章所论“方程”,地位相当于今天线性方程组。所论“方程术”,为所谓“直除法”。“直除”是连续相减的意思或累减的意思,“直除法”为连续相减消元法,在理论上、算法上与今天加减消元完全一样。

在方程章所列十八题中,有的相当于二元一次方程组,有的相当于三元一次方程组,也有的相当于五元一次方程组。其中第十三题为:“今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深,绠长各几何”。所问是六个未知数之值,依题意只能列出五个一次方程,可见这是世界上最早的一次不定方程组。

影响

《九章算术》总结了自先秦以来的中国古代数学,它既包含了以前已经解决了的数学问题,又有汉朝时新发现的数学成就。一般认为,它在数学史上,标志着中国古代数学体系的形成,是中国古代数学体系的初期代表作。

300px-九章算術.gif

九章算术影宋本

《九章算术》问世之前的中国先秦典籍中,记录了不少数学知识,但是却没有《九章算术》的系统论述,尤其是由易到难、由浅入深、从简单到复杂的编排体例,从而形成中国传统数学的理论体系。因而后世的中国数学家,都是从此开始学习和研究,唐、宋时,为国家明令规定的教科书,北宋时由政府刊刻,又是世界上最早的印刷本数学书。

《九章算术》中有许多数学问题都是世界上记载最早的。例如,关于比例算法的问题,它和后来在16世纪西欧出现的三分律的算法一样。关于双设法的问题,在阿拉伯曾称为契丹算法,13世纪以后的欧洲数学著作中也有如此称呼的,这也是中国古代数学知识向西方传播的一个证据。

《九章算术》对中国古代的数学发展有很大影响,这种影响一直持续到了清朝中叶。《九章算术》的叙述方式以归纳为主,先给出若干例题,再给出解法,不同于西方以演绎为主的叙述方式,中国后来的数学著作也都是采用叙述方式为主。历代数学家有不少人曾经注释过这本书,其中以刘徽和李淳风的注释最有名。

《九章算术》隋、唐时,流传到了日本和朝鲜,对其古代的数学发展也产生了很大的影响,之后更远传到印度、阿拉伯和欧洲,现已译成日、俄、英、法和德等多种文字版本。

热门推荐
  • 野史解密
  • 民间故事
  • 幽默故事
  • 童话故事
  • 历史故事
虚位以待
推荐阅读
岳飞精忠报国遭陷害,敌军奔走相庆,狂饮三日
岳飞精忠报国遭陷害,敌军奔走相庆,狂饮三日
岳飞,字鹏举,老家在河南汤阴,父母都是农民,他出生后不久,父亲就被大水淹死了。岳飞和他的母亲坐在缸中逃了出来,后来,岳飞一边识字一边学
揭秘姜子牙的野史 - 姜子牙为什么要杀光隐士?
揭秘姜子牙的野史 - 姜子牙为什么要杀光隐士?
隐士,是道家哲学术语。指隐修专注研究学问的士人。首先是“士”,即知识分子,否则就无所谓隐士。历代君王对待隐士无非有两种态度。一
[司马相如与卓文君] 一二三四五六七八九十百千万唯独缺少亿
[司马相如与卓文君] 一二三四五六七八九十百千万唯独缺少亿
"一二三四五六七八九十百千万 "这是司马相如写给卓文君的一封信。在古代 ,卓文君是少有的聪明女子 ,她读完信后 ,泪流满面。
卓文君 “愿得一心人,白首不相离”
卓文君 “愿得一心人,白首不相离”
十七岁的时候被父亲出于政治原因许配给了某一位皇孙,让她的人生很快跌入了谷底。婚后半年,丈夫就因病匆匆辞世,于是卓文君过起寡居生
白起之死 原因至今震撼心灵!
白起之死 原因至今震撼心灵!
白起是一个极度自信又极度自负的军事天才,真正永无败绩的战神。正因为追求职业生涯的完美,白起拒绝向秦昭王妥协,导致了最后自刎的悲
电视中古代
电视中古代"诛九族"是诛的哪九族?
一般认为,“九族”指的是“父族四、母族三、妻族二”。